Forces and NEWTON's LAWs

Forces

- Push or pull that acts on an object
- Cause a resting object to move
- Cause a moving object to accelerate
- Unit is Newtons, N
- $\mathrm{kg}^{*} \mathrm{~m} / \mathrm{s}^{2}$

Forces

- Net Force
- Overall force acting on an object
- Unbalanced forces
- One opposing force is greater than another
- Forces going in the same direction
- Causes acceleration
- Net force greater than or less than zero
- Balanced forces
- Equal and opposite force
- Net force is zero

Forces

table

- Friction
- Force that opposes motion of objects moving against each other

1. Static

- Friction force on objects not moving

2. Sliding

- Force in opposite direction of moving object

3. Rolling

- Point at which round object slides against a surface

4. Fluid

- Force in opposite direction of object in a fluid

Forces

- Gravity
- Attractive force between two objects that have mass
- Earth's gravity always pulls objects to the center of Earth
- Objects accelerate down and fight air resistance
- Weight
- Force of gravity acting on an object

- Weight equals mass times gravity
- $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Forces

- Fundamental Forces

- Gravity-attractive force between objects with mass
- Electromagnetic force-attractive force between objects with opposite charge
- Strong nuclear force-force holding nucleus together
- Weak nuclear force-causes radioactivity

Mrs. Coulter Says

- Do page 30 - Skip "Predict"
- Do page 31 - Skip "Analyze"
- Do page 32 - Skip "Predict" and "Summarize"
- Skip page 33

Newton's Laws of Motion

- First Law
- Object moves at constant velocity unless an unbalanced force acts on it
- Objects at rest stays at rest
- Objects in motion stays in motion
- Inertia
- Tendency of an object to resist change
- Dependent upon mass

Newton's Laws of Motion

- Second Law
- Motion of an object is related to mass and acceleration
- Greater force, greater acceleration
- Greater mass, smaller acceleration
- Force is a product of mass and acceleration

- $\mathrm{F}=\mathrm{ma}$

Newton’s Laws of Motion

Mrs. Coulter Says

- Do page 34 - Skip "Objectives"
- Do page 35 - Skip "Analyze"
- Do page 36 - All
- Do page 37 - Skip "Summarize It"

Using Newton's Laws

- What happens in a car crash?

- $1^{\text {st }}$ law says your body keeps moving at the same speed
- Seat belts-stop your body
- Air bags-provide a cushion
- Crumple zones-parts on the car that crush to absorb forces

Seat Belts!

Using Newton's Laws

- Newton's $2^{\text {nd }}$ Law \& Gravity
- Everything accelerates at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$
- Air resistance-air pushing up on an object
- Terminal velocity-maximum speed an object can fall
- Free fall-only gravity acting on the object
- Weightlessness-object appears to lose weight during free fall

F
$=\frac{\mathrm{F}}{\mathrm{m}}$
m

Using Newton's Laws

- Centripetal Force
- Force exerted toward the center of a curved path
- Gravity keeps the planets circling the sun
- Force \& Momentum
- Conservation of Momentum
- When objects collide, momentum is conserved

Friction!

Mrs. Coulter Says

- Do page 38 - Skip "Skim"
- Do page 39 - All
- Skip page 40

