FORCES AND NEWTON'S LAWS

- Push or pull that acts on an object
- Cause a resting object to move
- Cause a moving object to accelerate
- Unit is Newtons, N
 - kg*m/s²

- Net Force
 - Overall force acting on an object
- Unbalanced forces
 - One opposing force is greater than another
 - Forces going in the same direction
 - Causes acceleration
 - Net force greater than or less than zero
- Balanced forces
 - Equal and opposite force
 - Net force is zero

FORCES Motion Friction

• Friction

- Force that opposes motion of objects moving against each other
- 1. Static
 - Friction force on objects not moving
- 2. Sliding
 - Force in opposite direction of moving object
- 3. Rolling
 - Point at which round object slides against a surface
- 4. Fluid
 - Force in opposite direction of object in a fluid

• Gravity

- Attractive force between two objects that have mass
- Earth's gravity always pulls objects to the center of Earth
- Objects accelerate down and fight air resistance

• Weight

- Force of gravity acting on an object
- Weight equals mass times gravity
- $g = 9.8 \text{ m/s}^2$

• Fundamental Forces

- Gravity-attractive force between objects with mass
- Electromagnetic force-attractive force between objects with opposite charge
- Strong nuclear force-force holding nucleus together
- Weak nuclear force-causes radioactivity

MRS. COULTER SAYS

- Do page 30 Skip "Predict"
- Do page 31 Skip "Analyze"
- Do page 32 Skip "Predict" and "Summarize"
- Skip page 33

NEWTON'S LAWS OF MOTION

- Object moves at constant velocity unless an unbalanced force acts on it
 - Objects at rest stays at rest
 - Objects in motion stays in motion

- Inertia
 - Tendency of an object to resist change
 - Dependent upon mass

NEWTON'S LAWS OF MOTION

• Second Law

- Motion of an object is related to mass and acceleration
- Greater force, greater acceleration
- Greater mass, smaller acceleration
- Force is a product of mass and acceleration

• F = ma

NEWTON'S LAWS OF MOTION

Third Law

- When one object exerts a force on a second object, the second object exerts a force that is equal in strength and opposite direction
- For every action there is an equal and opposite reaction

MRS. COULTER SAYS

- Do page 34 Skip "Objectives"
- Do page 35 Skip "Analyze"
- Do page 36 All
- Do page 37 Skip "Summarize It"

USING NEWTON'S LAWS

- What happens in a car crash?
 - 1st law says your body keeps moving at the same speed
 - Seat belts-stop your body
 - Air bags-provide a cushion
 - Crumple zones-parts on the car that crush to absorb forces

SEAT BELTS!

USING NEWTON'S LAWS

• Newton's 2nd Law & Gravity

- Everything accelerates at a rate of 9.8 m/s^2
 - Air resistance-air pushing up on an object
 - Terminal velocity-maximum speed an object can fall
 - Free fall-only gravity acting on the object
 - Weightlessness-object appears to lose weight during free fall

USING NEWTON'S LAWS

• Centripetal Force

- Force exerted toward the center of a curved path
- Gravity keeps the planets circling the sun
- Force & Momentum
 - Conservation of Momentum
 - When objects collide, momentum is conserved

FRICTION!

MRS. COULTER SAYS

- Do page 38 Skip "Skim"
- Do page 39 All
- Skip page 40