\qquad
\qquad

Mixed Gas Laws

Give the name of the gas law required to solve each problem. Solve the equation and give the answer with appropriate units.
(1) The initial pressure of a gas is 2.0 atm and the initial volume is 150 mL . Determine the final pressure if the final volume is 200 mL .
(2) The initial temperature of a gas is $27^{\circ} \mathrm{C}$ and the initial pressure is $4.00 \times 10^{5} \mathrm{~Pa}$. Determine the final temperature if the final pressure is $6.50 \times 10^{5} \mathrm{~Pa}$.
(3) Calculate the volume of 3.4 mol of a gas at STP.
(4) The initial temperature of a gas is 800 K and the initial volume is 3.00 L . Determine the final volume if the final temperature is 600 K .
(5) Calculate the volume of 0.750 mol of gas at 4.00 atm of pressure and at 250 K .
(6) A sample of gas has an initial pressure of $2.0 \times 10^{6} \mathrm{~Pa}$ and an initial volume of 4.0 L at an initial temperature of $55^{\circ} \mathrm{C}$. Calculate the final pressure if the final volume is 2.0 L and the final temperature is $65^{\circ} \mathrm{C}$.
(7) Calculate the total pressure of a mixture of neon, argon, and xenon if the neon has a partial pressure of 0.50 atm , the argon has a partial pressure of 0.75 atm , and the xenon has a partial pressure of 0.25 atm .
(8) Determine the volume if 2.00×10^{24} atoms of krypton gas at STP.
(9) Determine the pressure (in Pa) if 200 g of water vapour occupies 300 mL at $43^{\circ} \mathrm{C}$.
(10) Determine the temperature if 6.80×10^{22} molecules of sulphur dioxide gas occupies 0.500 L at 2.00 atm .

Answers:
(1) 1.5 atm
(6) $4.2 \times 10^{6} \mathrm{~Pa}$
(2) 488 K
(7) 1.50 atm
(3) 76 L
(8) 74.4 L
(4) 2.25 L
(9) $9.72 \times 10^{7} \mathrm{~Pa}$
(5) 3.85 L
(10) 108 K

