Acids \& Bases

## Acids \& Bases

## Acids

- Produce hydrogen ions
- Form hydronium ion in water, $\mathrm{H}_{3} \mathrm{O}^{+}$
- Sour taste
- Conduct electricity
- Cause burns
- React with metals
- React with indicators
- Turn blue litmus paper red


## Base

- Produce hydroxide ion
- Solid crystals
- Corrosive
- Slippery
- Bitter taste
- Conduct electricity
- React with indicators
- Turn red litmus paper blue


## Acids \& Bases

$$
\mathrm{HCl}(g)+\mathrm{H}_{2} \mathrm{O}(\Omega) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

- Ionization of Acids
- Water surrounds the molecule
- Pulls apart the hydrogen
- Forms hydronium ions and anions
- Dissociation of Bases
- Ions break apart
- Forms hydroxide ions and cations
- Water does not bond
- Ionization of Ammonia
- Water loses a hydrogen to ammonia


$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NH}_{3}(\mathrm{~g}) \rightleftarrows \mathrm{NH}_{4}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
& \mathrm{H}: \ddot{\mathrm{O}}:+\underset{\mathrm{H}}{\mathrm{H}} \underset{\mathrm{H}}{\mathrm{H}}: \stackrel{\mathrm{H}}{\mathrm{H}} \rightleftarrows\left[\begin{array}{c}
\mathrm{H} \\
\mathrm{H}: \stackrel{\dot{\mathrm{H}}}{\dot{\mathrm{H}}}: \mathrm{H} \\
\mathrm{H}
\end{array}\right]^{+}+\left[\begin{array}{c}
\ddot{\mathrm{O}} \\
\ddot{\mathrm{H}}
\end{array}\right]^{-}
\end{aligned}
$$

- Creates ammonium ions and hydroxide ions


## Mrs. Coulter Says

- Do page 270 - Skip "Skim"
- Do page 271 - All
- Do page 272 - Skip "Create"


## Strength of Acids \& Bases

## Acids

- Strong
- Ionize completely
- Strong electrolyte
- $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
- $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
- Weak
- Partially ionize
- Weak electrolyte
- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{CO}_{3}$

- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$


## Bases

- Strong

- Dissociate completely
- Strong electrolyte
- $\mathrm{NaOH}, \mathrm{Ca}(\mathrm{OH})_{2}$
- $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$
- Weak
- Partially dissociate
- Weak electrolyte
- $\mathrm{NH}_{3}$
- $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$


## Strength of Acids \& Bases

- Strength and Concentration
- Strong does not mean concentrated
- pH of a Solution
- Measure of the hydronium ion in solution
- $\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- 0-14
- Neutral is 7
- Below 7 is acid
- Above 7 is base



## Strength of Acids \& Bases

- Buffers
- Solution that prevents a large in change in pH
- Made by reacting a salt with its weak base or acid
- BloodpH
- pH is 7.4
- Buffer of carbonic acid and hydrogen carbonate ion
- Acidosis
- Blood pH too low
- Causes fainting
- Use smelling salts to raise pH
- Alkalosis
- Blood pH too high
- Causes hyperventilation
- Breathe into sack to lower pH



## Mrs. Coulter Says

- Do page 273 - Skip "Predict"
- Do page 274 - All
- Do page 275 - Skip "Connect It"


## Salts

- Neutralization
- Acids and bases react to form water and salt
- Salt - any ionic compound

- $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
- Acid with metal
- Always produce hydrogen gas and salt
- $2 \mathrm{HNO}_{3}+\mathrm{Zn} \rightarrow \mathrm{H}_{2}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$
- Acid with carbonate ion
- Always produce water, carbon dioxide, and salt
- $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}$


## Salts

- Titration
- Reaction to determine the pH of a solution
- Must know concentration of one of the solutions
- Indicator used to find endpoint
- Soaps and Detergents
- Created with fatty acid and strong base
- Nonpolar tail attracted to oil

- Polar tail attracted to water
- Soap scum is a precipitate formed from soap and metal cations
- Detergents do not form soap scum



## Mrs. Coulter Says

- Do page 276 - Skip "Scan"
- Do page 277 - Skip "Sequence"
- Do page 278 - Skip "Synthesize It"

